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Supervised Segmentation of Un-Annotated
Retinal Fundus Images by Synthesis

He Zhao, Huiqi Li

Abstract—We focus on the practical challenge of
segmenting new retinal fundus images that are dissimilar
to existing well-annotated data sets. It is addressed in
this paper by a supervised learning pipeline, with its core
being the construction of a synthetic fundus image data
set using the proposed R-sGAN technique. The resulting
synthetic images are realistic-looking in terms of the query
images while maintaining the annotated vessel structures
from the existing data set. This helps to bridge the mismatch
between the query images and the existing well-annotated
data set. As a consequence, any known supervised fundus
segmentationtechnique can be directly utilized on the query
images, after training on this synthetic data set. Extensive
experiments on different fundus image data sets demon-
strate the competitiveness of the proposed approach in
dealing with a diverse range of mismatch settings.

Index Terms— Biomedical optical imaging, image seg-
mentation, phantoms.

|. INTRODUCTION

ETINAL fundus image segmentation is a fundamental

step in retinal image analysis and the follow-up oph-
thalmic diagnostics [1], [2]. Due to the laborious nature of
manual annotation by domain experts, only a small set of
annotated vessel structures in fundus images is available.
Notable examples include the set of 10 or 20 training images
in the STARE [3] or DRIVE [4] fundus image benchmarks,
respectively. Moreover, there is no any vessel structure anno-
tation for many fundus image datasets (e.g. Kaggle [5]).
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To further complicate the matter, different fundus image
datasets often exhibit distinct textural appearances. This is
illustrated in Fig. 1, where exemplar fundus images from
DRIVE, STARE, HRF [6], Kaggle, a mobile fundus imaging
dataset (Mobile [7]), and our clinical dataset (Anzhen) are
showcased. Visual discrepancies among these datasets are
large enough so that direct usage of segmentation models
learned on existing annotated dataset (e.g. DRIVE/STARE) to
a new dataset does not perform well. This phenomenon is in
fact commonly presented in everyday clinical practice. Even
for the same type of device, the obtained fundus images may
vary significantly due to the variabilities in clinical settings,
subjects, and acquisition protocols. It is a more challenging
problem of performing fundus image segmentation on a new
and distinct fundus image dataset in the absence of manual
annotations.

To address this problem, we present in this paper a super-
vised learning pipeline. The key point in our approach is the
construction of a synthetic fundus image dataset that is capable
of bridging the gap between an existing reference dataset
(where annotated vessel structures are available) and the new
query dataset (where no annotation is available). In this way,
existing supervised/deep learning methods for fundus image
segmentation can be engaged to learn a model dedicated to
the set of query images. The contribution of our approach
can be summarized into two aspects: first, to the best of our
knowledge our work is the first to address such a practical fun-
dus segmentation problem by leveraging the existing labeled
dataset; second, the proposed R-sGAN technique is capable of
synthesizing fundus images that are realistic-looking in terms
of the query images, while preserving the annotated vessel
structures of the reference dataset. Our approach has been
tested on a wide range of fundus image datasets and superior
performance is obtained. The implementation of our approach
and the results are also made publicly accessible .

Il. RELATED WORK

Due to its clinical importance, fundus image segmentation
has received ample attention [1], [8] over the years. Existing
methods can be roughly divided into two categories based on
whether an annotated training set is required: unsupervised and
supervised methods. Supervised methods learn their models

IResults and source code are available after acceptance at https://web.bii.a-
star.edu.sg/archive/machine_learning/Projects/filaStructObjs/Segmentation/fila
SegBySyn/
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Fig. 1. Anillustration of the observation that different fundus image datasets often exhibit distinct visual textural appearances. Here exemplar images
from DRIVE, STARE, HRF, Anzhen, Kaggle and Mobile datasets are displayed.

based on a set of training examples, while unsupervised
methods do not require a training set.

Regarding unsupervised methods in retinal vessel segmen-
tation, Hessian-based techniques have been proposed to utilize
the second order derivatives to characterize the foreground
boundaries [9], or to incorporate the eigenvalues [10] to
facilitate the delineation of vascular structures. Nonetheless
they could be awkward when dealing with the irregular-
shaped vessels. Alternatively, morphological information can
be incorporated as prior knowledge in unsupervised methods.
For example, Zana and Klein [11] propose a method based on
mathematical morphology and curvature evaluation to segment
the vessel structures from background. The recent work of
Multi-scale line detector (MSLD) [12] is arguably one of the
most powerful unsupervised fundus segmentation methods,
which is based on multi-scale line detection. Different from
the above methods, supervised methods [13]-[16] have been
very popular recently, where excellent segmentation results can
often be obtained by exploiting the available training dataset.
Becker et al. [14] propose a kernel boosting framework to
learn the filters. In [16], the structured and contextual features
are extracted to train gradient boosted tree as classifier in iden-
tifying vessel foregrounds. In particular, noticeable progress
has been made by the deep learning based methods [17], [18]
in the past few years, with performance surpassing even human
annotators on established datasets. In [15], Ronneberger et al.
proposed a U-net structure with skip-connection to pro-
duce image to image segmentation. Further improvement is
obtained in the deep retinal image understanding (DRIU)
method [18] by fine-tuning the pretrained visual geometry
group (VGG) networks and extracting specialized layers. This
inspires us to consider the exploration of supervised deep
learning techniques in our context.

Segmentation of unlabeled images can be treated as the
issue of unsupervised domain adaptation [19], which provides
a different perspective of our work. Unsupervised domain
adaptation concerns on transferring feature representations
from an annotated source dataset to a relevant target domain
where there are few or none annotations. In this view, our
problem can be recast as a domain adaptation with none
target labels. Recent work of domain adaptation has focused
on deep learning of the feature representations by either
directly minimizing the discrepancy between source and target
domains [20]-[22], or via a latent embedding space [23]. The
work of [22], [23] is particularly close, as they also engage
the generative adversarial networks (GANs) [24]. Meanwhile,
these methods [22], [23] primarily focus on other applications

such as city scenes and handwritten digits, where biomedical
applications are not considered. Moreover, these methods are
much more complicated, where losses of transferring from
source to target, and backward from target to source are
involved, among other complicated losses [23]. As a result,
dedicated deep learning models are trained with to achieve
the goal.

We would also like to mention the related efforts in fundus
image synthesis, style transfer, and recurrent neural networks.
One of the earliest efforts in fundus image synthesis is
perhaps for surgical simulations [25]. Later efforts [26], [27]
are primarily based on prior knowledge of the underlying
physics law and statistical modeling. More recently, the work
of [28], [29] focus on data-driven fundus image synthesis,
that is, the synthesized phantoms bear the same textural
characteristics of the set of training fundus images. One major
underpinning technique of them is the GANs introduced by
Goodfellow ef al. [24] and its improved variant [30]. Image
style transfer has been studied in textural analysis community
under various names such as image analogies [31], [32].
Recent work of Gatys er al. [33] successfully demonstrates
the applications in artistic drawing. On the other hand, the so
called recurrent neural network or RNN has emerged in a
wide range of applications such as speech recognition [34],
language modeling [35], imaging captioning [36], and image
generation [37]. Long-Short Term Memory (LSTM) [38] and
Gated Recurrent Unit (GRU) [39] are the recent developments
to overcome the vanishing gradient phenomenon when training
RNNS. In our context, a variant of GRU is proposed to obtain a
more compact form of deep learning representation, where the
key essence of GANs has been incorporated as the generator
gate, and the style transfer losses have also been utilized to
enforce faithful representation of the style and content from
inputs.

I11. OUR APPROACH

Let us start by stating the problem of interest: given an
existing well-annotated retinal image dataset and a testing
set without annotation (images are usually dissimilar to the
existing annotated dataset), we would like to train a supervised
segmentation model that can best segment the testing image
set. Using the domain adaptation terminology, the known
annotated fundus images dataset can be regarded as the source

ns
dataset D) = {(xﬁs),yfs))}, C where (xﬁs),y?)) denotes
i=

a pair of raw fundus image and the corresponding pixelwise
annotation of its vessel structure, and ny; denotes the number
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Fig. 2. The flowchart of our approach that contains two steps. Step 1 involves the construction of synthesized target training set with the vessel
structures of the reference training set and the textural appearance of the target query images. Step 2 is a supervised segmentation method to train

a dedicated target model.

of such pairs. The goal is nto automatically segment the
new testing set images {xy)} 't_l by engaging a state-of-the-
art supervised segmentation r%lgthod. Note there is no label
information on the set of testing or target images.

To tackle this problem, a two-step pipeline is proposed
in our work. As illustrated in Fig. 2, step 1 focuses on
the constructiqn of a synthesized target dataset, DO =

~ "t
(&)
precisely a segmentation annotation from the existing training
set, while its corresponding instance fclm is a synthesized
fundus image with the style (i.e. textures) of target image set.
After such a synthesized dataset is available, step 2 proceeds
to learn a supervised segmentation model dedicated to the
query images. Generally speaking, any existing supervised
segmentation method can be engaged here.

The main technical innovation of this paper lies on the
proposed R-sGAN technique to generate synthesized images.
Our synthesis approach can generate realistic-looking training
images containing the content (i.e. vessel structures) of the
source dataset with the same textural style of the target images
as depicted in Fig. 2. Different from [29], a recurrent network
is considered in our approach. The generator is embedded
into the cell structure of recurrent neural network as a gate
to generate target style images based on current input and
previous cell state. This combination of GAN with recur-
rent fashion enables us to learn a more compressed model.

. The label yl@ of each training example is

With the advantage of recurrence, multiple styles of images
can be generated at the test phase once the model is trained.
We will focus on the proposed R-sGAN in what follows.

A. R-sGAN

Our R-sGAN is a non-linear variant of the GRU [39], a form
of recurrent neural networks. In particular, non-linear neural
net functions are used in place of the matrix multiplications
of a typical GRU, in a way similar to the convolutional
LSTM idea in [40]. Moreover, as illustrated in Fig. 3(b-c),
the generator of GAN [24] is incorporated in the R-sGAN
cell as a generator gate, while the discriminator of GAN is
included as part of the loss function. These adaptations enable
our R-sGAN model to synthesize realistic-looking fundus
images efficiently and effectively, and in particular, it enables
to synthesize images of multiple styles from one model.

More specifically, as presented in Fig. 3(a), our R-sGAN
model is composed of a sequence of cells connected by the cell
states, hg, h1, ..., hr, where the first cell state kg is initialized
with zero values. Each cell at time 7 acts as a local conditional
model, which consists of the following three components: reset
gate r,, generator gate X,, and update gate wu,. Similar to
the original GRU, the reset and update gates r, and u, are
engaged for guiding the current information flow, while the
generator gate X, combines the current vessel structure, a noise
code, and current cell state to produce synthesized images,
which is illustrated in Fig. 3(b).
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Fig. 3. (a) The proposed R-sGAN synthesis process, where the GRU component is utilized and depicted in (b). The involved loss functions are
summarized in (c). The generator gate adopts the U-net structure [15], while inspired by the GAN, a corresponding discriminator is considered
in (c) that also induces the adversarial loss and the diversity loss. The style and content features considered in our approach are directly obtained
from the deep learning representation. Without loss of generality, the VGG network is considered in our work to extract these features, which is
illustrated in (d).

1) Reset Gate: The reset gate r, dictates how much infor- function:
mation of the previous cell state can enter to the current cell.
This allows the temporal network to drop any information that re=o (f y (J’ W, hr—l)) ) (1)
is irrelevant in future, while keeping a compact representation.
In our work, the reset gate corresponds to a fully convolu- where yS) is the source vessel structure input at time step z,
tional network (FCN) f,, followed by the sigmoid activation h,_ refers to the previous cell state. Details of the FCN
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function f, is relegated to Section II of supplementary file
(available in the supplementary file /multimedia tab.) due
to space constraints. After the reset gate, the cell state is
changed to

heoi =r: @iy, @)
with ® denoting element-wise multiplication.
2) Generator Gate: The U-net structure of [15], [29] is

employed here to generate synthetic images. The 6 para-
meterized generator G with the input of the source vessel

structure y?) and the cell state from the previous time step

can produce a synthetic image that is similar to its target style
fundus image xgt) . This amounts to learn a mapping

X: =Gy (y(,s),ﬁr_l,zz) ) 3)

Here y, is the source vessel structure which the generator is
conditioned on, z, is the noise code to diversify the generated
images.

3) Update Gate: Similar to reset gate, the update gate u,
also consists of a FCN f, which is followed by a sigmoid
activation function. Different from other gates, the update gate
controls how much information in the previous state can be
updated to a new cell state. This is realized by considering
a momentum term u#, which is inspired by the stochastic
meta descent in non-linear optimization [41]. Concretely, u,
is computed by

u,:a(f# (y(f) he )) )

The network architectural details of f, are elaborated in
Section II of the supplementary file (available in the supple-
mentary file /multimedia tab). After the update gate, the signal
obtained from the generator G becomes

=0 -u)®h, 1 ®u, %, (5)

where @ refers to element-wise addition. With the help of
the update and reset gates, our GRU cell learns to capture
dependencies over the sequence of inputs. On the other hand,
the generator gate concentrates on synthesis with GAN.

B. Loss Function

Our R-sGAN is inspired by the adversarial learning method-
ology of GAN [24]. That is, in addition to the genera-
tor G, a discriminator D,; or short-hand D is also considered,
as d; = Dy(x:,y,) w1th d; € [0, 1]. When the input x, is
a phantom 2, ideally d, — O0; if the input is a real retinal
image x, ideally d, — 1.

Following [24], the discriminator D is

maximizing
~06l2) )

Lp = Z(ZlogD ( l(sz),yl(sz))—i-log(
i T
(6)

where i presents the i-th training sequence, the index
pair (i, ) indicates the z-th time step in the i-th sequence.
On the other hand, the other player (i.e. the generator) G is
updated by minimizing an objective function that can be
decomposed into five losses as follows.

learned by

1) Adversarial Loss: During training, the goal of genera-
tor G in each cell is to synthesize realistic-looking images
that can fool the discriminator D. Following [24], the objective
function for this purpose is the adversarial loss

Luy = —1log D (37, y). )

In order to simplify our notation, the indices i and 7 are
not imposed, which will be straightforward to deploy when
necessary.

2) Style and Content Losses: To evaluate how faithful our
synthesized phantom is with respect to a specific target fundus
image, the style and content losses of [33] are utilized here.
For style loss, based on a deep learning feature representation,
the Gram matrix is considered to characterize pairwise tex-
tural correlations between feature responses. Experimentally,
the convolutional neural network of VGG-19 [42] is utilized
here for feature representation. The Gram matrix G' = (g,
is defined as the inner product between the m-th and n-th
vectorized feature maps in the /-th layer:

8mn = D bricii- (®)
k

¢’ is the vectorized version of feature map ¢ in
VGG-19 networks, as is also illustrated in Fig. 3(d). Now,
With the style representation G' of the target style xg) and
the phantom #0 s style loss can be defined as

Ly = ZZ Wsz Hg’"” ( (t)) - gf"” (;C(t)) H2 ©)

Here w; depicts the weight of the /-th layer Gram matrix and
is set to 0.2 in practice. W; and H; are the width and height
of the feature map ¢;.

The content loss is also engaged to enforce the generated
image retaining the prescribed vessel structure, which is

defined as
S [ (=) -4 (5],

3) Diversity Loss: One main drawback of existing GAN
techniques such as [30] is that they tend to generate fixed out-
put for a given input. To encourage diversity in the generated
images, we proposed a diversity loss with a simple idea: if the
input noises z and z’ bear noticeable difference, the resulting
phantoms & and %’ should also be different. It leads to the
following loss function

(10)

L cont —

(1)

4) Total Variation Loss: In support of spatial smoothness in
the generated phantom X, the following total variation loss is
also considered, as

L= 3 (Jfuner =2l + Fwers = fual}).
w,h

Lgiy = — HZ —Z/Hz : H’A‘ _’A‘/Hl :

(12)

where w € 1,...,W, h € 1,..., H, and %, denotes the
pixel value of a given location in phantom image X with
width W and height H.
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All above loss functions together give rise to

LG = wadyLadv + sty Lsty + cont Leont

+ wdivLdiv + 0w L. (13)

In practice, the values of w,gy, @giy, and wy, are empirically
fixed to 1, 0.6, 100 respectively. The values of wsy, Wcont are
dataset dependent, which will be stated later in the experi-
mental section. As stated earlier, during training our generator
is updated by minimizing Ls mentioned above, while the
discriminator is to maximize Eq. (6).

IV. EXPERIMENTAL SET-UP
A. Datasets

The benchmark datasets we used in our paper are
DRIVE [4], STARE [3], high-resolution fundus or HRF [6],
IOSTAR [43]. DRIVE contains 20/20 (train/test) fundus
images with size of 584 x 565 pixels. Meanwhile STARE
contains 10/10 fundus images of size 605 x 700 pixels.
IOSTAR is a dataset of 24 images acquired from scanning
laser ophthalmoscope with a resolution of 1024 x 1024 pixels,
with the first half for training set. HRF is a high resolution
fundus image dataset with image size of 3, 304 x 2, 336 pixels,
with a train/test split of 22/23 being adopted here. The vessel
structure annotations are all available for these benchmarks.

We also consider recent retinal fundus datasets that come
without vessel structure annotations as the aforementioned
benchmarks, including Kaggle [5], Mobile [7], and our Anzhen
datasets. For the Kaggle dataset [5], here we focus on the sub-
set images of the most severe rating category (i.e. Proliferative
diabetic retinopathy) as these images are with a diverse range
of textures, thus are challenging to handle. The Mobile dataset
contains relatively low-quality fundus images captured by a
smart-phone based ophthalmoscope, a product of manufacturer
Welch Allyn. Ten images obtained from Xu et al. [7] are used
in our experiment. Finally, the Anzhen dataset is collected
in Beijing Anzhen Hospital during the past 7 years from
cataract patients aged between 35-64. The images are captured
using a Canon CR2 non-mydriatic camera with a 45° angle
of view at a resolution of 2,544 x 1,696. The cataract is
a common pathological disease where the main branches of
retinal vein or artery are dimly visible in retinal image, as a
result of progressively clouding of the eye lens that leads to a
decrease in vision.

B. Pre-/Post-Process for Synthesized
Dataset Construction

In this paper, our R-sGAN is trained with a standard image
size of 512 x 512. Consider for example the DRIVE dataset
as the source dataset: as the images in DRIVE are of size
584 x 565, we first crop the images to 565 x 565, then resize
them to 512 x 512 via bicubic interpolation. Besides the vessel
structures, the optical disk is also considered when training the
R-sGAN. In other words, when constructing the synthesized
target image dataset, both DRIVE vessel structures and the
corresponding optical disk annotations are used as the source
inputs to Gy, which are collectively referred to as the vessel

structures when there is no confusion. The generated images
are then resized to be the same size of the source fundus
images. Similar pre- & post-processes are carried out when
working with other source and target datasets.

C. Model Architecture of the Proposed R-sGAN

Our R-sGAN has been introduced in previous sections,
as well as illustrated in Fig. 3. Here we emphasize on its
practical aspects. The stem of our R-sGAN is Gated Recurrent
Unit, whose structure is described in Fig. 3(c). The two fully
convolutional networks, f, and f,, are used in the reset gate
and update gates, respectively. Both of them consist of two
convolutional and deconvolutional layers with weights y and u
learned by minimizing the loss function Lg. The network
Gy of the generator gate consists of 6 convolutional layers
and 5 transposed convolutional layers with a kernel size of
4 x4 x Iy, where Iy is self-manifested by the third dimension
of its consecutive layer. The skip connection structure of
U-net [15] is also adopted in Gy. The discriminator D, is
built by 5 convolutional layers with the same kernel size just
described, as well as a fully connected layer to produce the
final prediction. The length of noise code z is 400. More
detailed information of the neural networks are provided in
Section II of the supplementary file due to space constraints.
In addition, the layers in VGG-19 to extract style and con-
tent features are at lst, 3rd, 5th, 9th, 15th / 10th layers,
respectively. Regarding the values of the style and content
losses, sy, Weons: the values are set to 10 and 1 respectively
for both DRIVE and HRF. Their values are further fixed to
15 and 3 respectively for STARE, and to 5 and 1 respectively
for IOSTAR dataset empirically. The discussion of parameter
settings is provided in Section XI of supplementary file.

D. Computation Time

Our experiments are carried out on a standard desk-
top with an Intel iCore 7 CPU and a Titan-X GPU of
12GB memory. During experiments, we fix T = 5 for
sequence length due to the GPU memory limitation. The
training time of our R-sGAN using Python implementation
amounts to 347 minutes. At test run of step one, the aver-
age time of synthesizing a DRIVE-size fundus image is
0.4471 second.

V. EXPERIMENTS
A. Examples of the Synthesized Images

The experiments here emphasize on qualitative examination
of the synthesized images. Fig. 4 presents several exemplary
synthesized images: in each pair, the left image presents the
vessel structure from the source dataset, the middle one is the
query image of the target dataset, and the right one is the syn-
thesized image. More specifically, the source dataset is STARE
for (a)(c), and DRIVE for (b)(d). The target dataset is DRIVE
for (a)(c), STARE for (b), and HRF for (d). These visual results
demonstrate that the generated images are capable of capturing
the textual style from the target images as well as the vessel
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(@

Fig. 4. A gallery of synthesized images with different target styles. Each
subplot displays a triplet of source vessel structure, the target style and
one of the synthesized images: on the left is an exemplar source vessel
structure, in the middle is an exemplar target style image; On the right
is an exemplar generated phantom having the same style of the target
dataset while maintaining the vessel structure of the source dataset.
See text for details. (a) Source: STARE, target: DRIVE, (b) Source:
DRIVE, target: STARE, (c) Source: STARE, target: DRIVE, (d) Source:
DRIVE, target: HRF.

Target style

Source
vessel structure
Zoomed-in view

Synthesized images
with different z

Zoomed-in view
of selected
synthesized images

Fig. 5. An illustration that distinct phantom outputs are generated
from the same source vessel structure but with different noise code z.
Top row displays the source vessel and target style. Second row shows
the diverse synthesized images. The last row presents the zoomed-in
view of selected parts.

structures from the source training set. More results of the
synthesized images could be found in the supplementary file.

Moreover, Fig. 5 displays exemplar phantom images gener-
ated with the same source vessel structure and target style, but

with different noise code z. To focus on the promising capacity
of our approach in generating multiple distinct phantoms from
the same input images, here the source vessel structure and
the target style are from the training set and the testing
set of the same DRIVE dataset, respectively. From Fig. 5,
it is observed that these images are with different textural
patterns and local luminance, while all maintain the same
vessel structure. It showcases the effect of our diversity loss
in the R-sGAN training phase. We believe this diversity
loss helps in addressing the mode collapse phenomenon in
GANS that is well-known to plague the existing GAN related
research [28], [30], where significant changes in noise vector
values do not result in noticeable appearance change in the
generated images.

B. Quantitative Evaluation of Segmentation
Results on the Annotated Datasets

To evaluate the performance gain of utilizing the synthe-
sized target datasets on segmentation task, we consider two
distinct deep learning segmentation methods, and one typical
supervised learning method. One is direct image-to-image
translation, i.e. taken an entire fundus image as input, and
predict the whole segmentation map as output. The second
one is pixel-wise prediction. A sliding window is used to
predict on the central pixel being vessel or not based on
the current image patch. The third one is based on feature
extraction and classification. More specifically, for image-to-
image segmentation methods, the state-of-the-art DRIU [18]
is engaged; for pixel-wise segmentation methods, a fully
convolutional neural network method is utilized with the basic
components being the residual blocks of the ResNet [44],
which also achieves competitive performance and is later
referred to as Pixel-CNN. The third one is the Kernel Boost
method of [14]. For the purpose of a fair comparison, the same
training protocol is applied in training these different models
on each of the target datasets. It is worth mentioning that as a
sanity check, these two segmentation methods have also been
trained and tested on the same well-annotated datasets, where
their reported performance may serve as an upper bound in
our problem context. More concretely, in terms of DRIU [18],
its segmentation F1 score on DRIVE and STARE test sets are
81.62% and 82.43%, respectively. For Pixel-CNN, its respec-
tive performance drops to 80.33% and 79.02%. For Kernel
Boost, its respective performance is 78.10% and 77.30%. Note
that throughout the experiments, by default DRIVE is used as
the reference or source dataset. The only exception is when the
target datasets is DRIVE itself, in this case STARE is used as
its source dataset. It is also worth noting that the FOVs of these
datasets are relatively similar, and empirically it does not have
a major impact in the final results. Further discussion about
FOVs could be found in the supplementary file.

Our approach is evaluated over the major fundus
benchmarks that come with vessel structure annotations,
namely, the DRIVE, STARE, HRF, and IOSTAR datasets.
Table I summarizes the quantitative results over an unsu-
pervised as well as several supervised baselines. Here each
column provides the segmentation results of a specific model.
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TABLE |
PERFORMANCE COMPARISON OF STATE-OF-THE-ART METHODS OVER A DIVERSE RANGE OF TARGET BENCHMARKS. SEGMENTATION
METHODS INCLUDE THE UNSUPERVISED MSLD METHOD [12] AND IUWT METHOD [9], AS WELL AS THE PIXEL-CNN, THE DRIU [18]
MODELS AND KERNEL BOOST [14] MODELS TRAINED ON DRIVE OR STARE DATASETS RESPECTIVELY, AS WELL AS
OUR APPROACH. RESULTS ARE REPORTED IN F1-SCORE (%), SENSITIVITY (%) AND SPECIFICITY (%)

DRIU

Pixel-CNN I Kernel Boost |

‘ TUWT [9] ‘ MSLD [12] “

[
| DRIVE model | STARE model | Our approach || DRIVE model | STARE model | Our approach || DRIVE model | STARE model | Our approach

Fl-score 68.81 72.98 / 75.75 78.82 / 69.30 76.02 / 76.09 77.00
DRIVE Sensitivity 68.38 66.11 / 78.90 79.01 / 68.57 76.41 / 74.86 74.81
Specificity 97.12 98.58 / 97.20 97.95 7 97.20 97.66 7 97.92 98.14
Fl-score 73.07 77.74 68.32 / 79.60 71.87 / 76.55 72.73 / 75.36
STARE Sensitivity 71.93 74.15 67.12 / 79.49 71.29 / 76.31 75.96 / 74.67
Specificity 97.96 98.63 98.03 / 78.36 97.85 / 98.10 97.34 / 98.10
Fl-score 68.87 58.56 65.31 74.41 76.59 53.90 41.23 58.63 70.63 68.57 71.45
HRF Sensitivity 66.31 53.50 62.97 73.02 76.08 53.66 46.69 5471 70.69 66.26 70.37
Specificity 97.80 97.53 97.57 98.07 98.13 96.07 92.86 97.64 97.54 97.74 97.78
Fl-score 62.70 71.01 74.32 66.98 77.07 66.71 53.13 68.15 65.43 68.61 70.33
IOSTAR | Sensitivity 64.68 68.87 79.55 72.06 79.15 71.13 57.28 68.42 69.36 68.91 69.40
Specificity 96.67 98.12 97.34 96.57 97.92 96.64 95.27 97.38 96.59 97.44 97.77
4 _ 4 4
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Fig. 6. Precision recall curves of the DRIVE, STARE, HRF, and IOSTAR datasets as the target. By default, the DRIVE dataset is the source dataset,
with the exception that when DRIVE is the target dataset, STARE is used instead as the source. DRIU [18] is the supervised segmentation method
engaged here in our approach. (a) DRIVE. (b) STARE. (c) HRF. (d) IOSTAR.

Results from the DRIU models are shown in 5th—7th
columns, while those of the Pixel-CNN models are presented
in 8th—10th columns, and those of the Kernel Boost models
are displayed in 11th—13th columns. For example, under the
DRIU-tagged columns, DRIVE model refers to the DRIU
model trained on the DRIVE training set. Meanwhile, each
row displays the results of applying the respective model to
a specific target testing set. Besides the supervised model,
the widely used unsupervised methods, Multi-scale line detec-
tor (MSLD) [12] and TUWT [11] are also considered as
reference methods. From Table I, it is observed that MSLD
consistently produces comparable results across different
datasets. On the other hand, the performance of the supervised
models varies significantly when applied to different datasets:
it usually outperforms that of MSLD when it works well; when
it does not work well, the performance may degrade noticeably
and sometimes may be much worse than that of MSLD.
Overall, our approach engaged with the DRIU segmentation
method of [18] consistently outperforms these supervised and
unsupervised methods in comparison. It is also interesting to
mention that within the DRIU-tagged columns, our approach
achieves better results than other DRIU models that are trained
on other datasets, and the same phenomenon can be observed
within the Pixel-CNN-tagged columns. Take HRF for example,
the DRIU DRIVE model achieves a Fl-score of 65.31%, vs.
74.41% from the DRIU STARE model. Our approach using
DRIU method obtains the best performance of 77.07%. Sta-
tistical significance test (i.e. Wilcoxon signed-rank test) also
indicates that our approach outperforms the comparison meth-
ods with a statistical significance. Interested readers may refer
to Section III of the supplementary file for details.

In what follows, we will focus on the DRIU segmentation
method of [18] by default. We also note that same conclusion
can be drawn if Pixel-CNN is instead considered. Figure 6
reveals more detailed information by precision-recall curves
over each of the datasets as the test set. In most cases,
our approach outperforms the rest methods throughout the
PR curve plots, often by a noticeable margin, which is in
strong agreement to our initial hypothesis that training with
such synthesized dataset of target style and source content
does help in bridging the gap, thus leads to better segmen-
tation performance. Representative results are also illustrated
in Fig. 7, where red color in the resulting error maps indicates
the false negative pixels, green color refers to the background
pixels wrongly classified as vessel pixels. It can be seen that
our approach produces less false negative pixels than both
supervised and unsupervised peer methods, which indicates
that more vessel pixels can be captured. We believe the reason
is that our segmentation model has the advantage of learning
the proper set of features from our synthesized target dataset
to detect these vessel pixels out of cluttered backgrounds.
Meanwhile, there are less green pixels in (c) than in (f), which
indicates our approach results in less false alarms. This high
precision can also be reflected in Fig. 6 where the precision
is the highest under the same recall rate.

C. Qualitative Evaluation of Segmentation Results on
Un-Annotated Datasets: Anzhen, Kaggle, and Mobile

It has been demonstrated that our approach improves the
segmentation performance on these well-known benchmarks
with annotations. Moreover, it is of interest to see how it
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Fig. 7. A visual comparison of segmentation results over different datasets. (a) Input fundus images from various datasets: DRIVE, HRF and

STARE; (b) Ground truth vessel structures; (c-f) are the error maps of the comparison methods. Note (c) is our approach with DRIVE being used as
source dataset, except for the first row where STARE is used as source instead. (d-f) are the supervised/unsupervised comparison methods trained
on DRIVE and STARE datasets, respectively. DRIU [18] is the supervised segmentation method engaged here in our approach.

Anzhen

Target
query images

Kaggle

MSLD

DRIU
DRIVE model

DRIU
STARE model

Our approach

Fig. 8. Qualitative comparisons of our approach vs. direct application of DRIU models and MSLD on Anzhen and Kaggle datasets. First row displays
several query Anzhen or Kaggle images. The 2nd to 4th rows present segmentation results of applying the MSLD method, as well as the DRIU
DRIVE and STARE models, respectively. The last row displays results from our approach when accessing to a source DRIVE dataset.

performs on new query images without vessel annotations.
This motivates us to consider the following three datasets:
Anzhen, Kaggle, and Mobile.

In our in-door Anzhen dataset, most images are from
cataract patients. Cataract is a common pathological disease
among seniors. The retinal images of cataract patient are often
blurred and vessels are much less visible when comparing

with the normal retinal images. As presented in the left
panel of Fig. 8, the unsupervised MSLD method as well as
the supervised DRIU DRIVE and STARE models encounter
considerable difficulties here in adapting to this context and
properly detecting the main vessel trunks or any vessel at all.
In contrast, main vessels and many thin and tiny branches
can be picked up by our approach. On the other hand for the
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Fig. 9. Qualitative comparisons of our approach vs. direct application
of DRIU models and the MSLD method on the Mobile dataset. First
row displays several query Mobile images. The 2nd to 4th rows show
the segmentation results of applying the MSLD method, as well as the
DRIU DRIVE and STARE models, respectively. The last row presents the
results of our approach when accessing to a source DRIVE dataset.

Kaggle dataset, there are noticeable variability in contrast and
luminance, mostly due to the presence of diabetic retinopathy.
Some exemplar images are displayed in the right panel of
Fig. 8. Similar to the Anzhen dataset, the DRIU DRIVE model
is easily affected by these textural deviations from the typical
DRIVE images, which results in poor segmentation results
with either almost no vessels or lots of false positive noises.
MSLD is also noticeably affected by the pathological patterns
with a lot of false alarms. The DRIU STARE model performs
better at retaining the main vessel trunks. Finally, our approach
produces the most satisfactory results visually: it is capable of
retrieving the main parts while tiny vessels can also be better
captured from noisy backgrounds.

Retinal fundus images captured by the mobile fundus
devices could be even comparable to those from the standard
but more expensive fundus cameras. However the imaging
quality may deteriorate a lot for a less experienced user.
As a result, we often end up with low quality and poorly
illuminated fundus images as shown in Fig. 9. These images
become challenging for DRIU DRIVE or STARE models,
where although some vessel trunks are found, many are
left out erroneously as backgrounds. For the unsupervised
MSLD method, it is again negatively influenced by wrongly
recognizing massive amount of background pixels as part of
the foreground tubular structure. Our approach, on the other
hand, are much better in picking up the main vessel trunks
as well as the detailed branches without introducing much
of these false alarms. Note there are some false positives in

our results, where most are from the peripheral dark regions,
and many can be easily removed in a postprocessing step by
applying proper morphological image operators.

VI. CONCLUSION AND QUTLOOK

This paper is to address the challenging problem of reliably
segmenting a new set of un-annotated query fundus images
with the help of a reference dataset, which is well-annotated
but the images are dissimilar to the target query images.
It leads us to consider a two-step approach that relies on the
construction of a synthetic dataset by a recurrent generative
model, R-sGAN, to bridge the dissimilarity gap. Experimental
evaluations on a diverse range of fundus image datasets
demonstrate the effectiveness of the proposed approach. For
future work, we plan to further investigate its application to
the downstream clinical goal of ophthalmic diagnostics.
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